Curvature from Graph Colorings

نویسنده

  • Oliver Knill
چکیده

Given a finite simple graphG = (V,E) with chromatic number c and chromatic polynomial C(x). Every vertex graph coloring f of G defines an index if (x) satisfying the Poincaré-Hopf theorem [17] ∑ x if (x) = χ(G). As a variant to the index expectation result [19] we prove that E[if (x)] is equal to curvature K(x) satisfying Gauss-Bonnet ∑ xK(x) = χ(G) [16], where the expectation is the average over the finite probability space containing the C(c) possible colorings with c colors, for which each coloring has the same probability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect $2$-colorings of the Platonic graphs

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

متن کامل

Nowhere-harmonic Colorings of Graphs

Abstract. Proper vertex colorings of a graph are related to its boundary map, also called its signed vertex-edge incidence matrix. The vertex Laplacian of a graph, a natural extension of the boundary map, leads us to introduce nowhere-harmonic colorings and analogues of the chromatic polynomial and Stanley’s theorem relating negative evaluations of the chromatic polynomial to acyclic orientatio...

متن کامل

Hajj Os Theorem for Colorings of Edge-weighted Graphs

Hajj os theorem states that every graph with chromatic number at least k can be obtained from the complete graph K k by a sequence of simple operations such that every intermediate graph also has chromatic number at least k. Here, Hajj os theorem is extended in three slightly diierent ways to colorings and circular colorings of edge-weighted graphs. These extensions shed some new light on the H...

متن کامل

Hajós Theorem For Colorings Of Edge-Weighted Graphs

Hajj os theorem states that every graph with chromatic number at least k can be obtained from the complete graph K k by a sequence of simple operations such that every intermediate graph also has chromatic number at least k. Here, Hajj os theorem is extended in three slightly diierent ways to colorings and circular colorings of edge-weighted graphs. These extensions shed some new light on the H...

متن کامل

On Low Rank-Width Colorings

We introduce the concept of low rank-width colorings, generalizing the notion of low tree-depth colorings introduced by Nešetřil and Ossona de Mendez in [25]. We say that a class C of graphs admits low rank-width colorings if there exist functions N : N→ N and Q : N→ N such that for all p ∈ N, every graph G ∈ C can be vertex colored with at most N(p) colors such that the union of any i ≤ p colo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1410.1217  شماره 

صفحات  -

تاریخ انتشار 2014